Inhibition of human malignant neuroblastoma cell DNA synthesis by lipoxygenase metabolites of arachidonic acid.

نویسندگان

  • E J Werner
  • R W Walenga
  • R L Dubowy
  • S Boone
  • M J Stuart
چکیده

In vivo studies have shown that inhibitors of cyclooxygenase metabolism of arachidonic acid may diminish growth and metastasis of certain tumors. Because cyclooxygenase inhibition may increase the production of lipoxygenase products of arachidonic acid metabolism, we have investigated the effect of two such products, 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-hydroxyeicosatetraenoic acid (15-HETE) on tumor cell proliferation in vitro. When neuroblastoma cells (SK-N-SH) in culture were treated with 12-HETE for 18 hr, incorporation of [3H]thymidine was inhibited up to 64% at concentrations from 20 to 50 microM. Under the same conditions, 15-HETE resulted in inhibition of up to 46%, while arachidonic acid had no apparent effect. When evaluated in the presence of serum, 12-HETE at a concentration of 120 microM produced a 20.6 +/- 2.8% (S.E.) inhibition of the increase in total DNA content over 48 hr, while 15-HETE at this concentration produced a 16.5 +/- 5.3% inhibition. We conclude that 12-HETE, the product of platelet lipoxygenase, and 15-HETE, a product of neutrophil and lymphocyte lipoxygenases, can inhibit human neuroblastoma cell growth in vitro and may play a role in the effect of cyclooxygenase inhibitors on tumor growth in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Survival Signalling through PPARδ and Arachidonic Acid Metabolites in Neuroblastoma

Retinoic acid (RA) has paradoxical effects on cancer cells: promoting cell death, differentiation and cell cycle arrest, or cell survival and proliferation. Arachidonic acid (AA) release occurs in response to RA treatment and, therefore, AA and its downstream metabolites may be involved in cell survival signalling. To test this, we inhibited phospholipase A2-mediated AA release, cyclooxygenases...

متن کامل

Modulation of cell-substrate adhesion by arachidonic acid: lipoxygenase regulates cell spreading and ERK1/2-inducible cyclooxygenase regulates cell migration in NIH-3T3 fibroblasts.

Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the...

متن کامل

The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans.

The roles played by arachidonic acid and its cyclooxygenase (COX)-generated and lipoxygenase (LOX)-generated metabolites have been studied using rodent islets and insulin-secreting cell lines, but very little is known about COX and LOX isoform expression and the effects of modulation of arachidonic acid generation and metabolism in human islets. We have used RT-PCR to identify mRNAs for cytosol...

متن کامل

Design, synthesis, and computational studies on dihydropyrimidine scaffolds as potential lipoxygenase inhibitors and cancer chemopreventive agents

Dihydropyrimidine scaffold has a wide range of potential pharmacological activities such as antiviral, antitubercular, antimalarial, anti-inflammatory, and anticancer properties. 5-Lipoxygenase enzyme is an enzyme responsible for the metabolism of arachidonic acid to leukotrienes. The elevated levels of this enzyme and its metabolites in cancer cells have a direct relation on the development of...

متن کامل

Effects of lipoxygenase metabolites of arachidonic acid on the growth of human mononuclear marrow cells and marrow stromal cell cultures.

The effects of various lipoxygenase metabolites of arachidonic acid (AA) were investigated on the growth of freshly isolated human bone marrow mononuclear cells and marrow stromal cell cultures. LTB4, LXA4, LXB4, 12-HETE and 15-HETE (1 microM) decreased [3H]-thymidine incorporation on marrow stromal cell cultures without affecting cell number. Only 12-HETE showed a dose-response effect on [3H]-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 1985